
FaceDancer 2
Easy USB hacking, sniffing, and spoofing

Dominic Spill K. Temkin
@dominicgs @ktemkin

Thank you (in no particular order) to:
Travis Goodspeed (@travisgoodspeed)

Sergey Bratus (@sergeybratus)

Michael Ossmann (@michaelossmann)

Micah Elizabeth Scott (@scanlime)

Assured Information Security (@ainfosec)

Great Scott Gadgets (@gsglabs)

Why hack on USB?
USB is everywhere.

Why hack on USB?

Practical security does not improve until tools for
exploration of the attack surface are made
available.

 —Joshua Wright, Toorcon 11, 2009

Why hack on USB?

The capability to fuzz / monitor / emulate / MITM USB devices enables:

● Finding vulnerabilities in USB or driver stacks
● Building tools that work with existing hardware / software
● One to get a foot in the door for attacking black box systems.
● Building implants and tools for playing NSA.

USB, how does that work?

USB, how does that work?

USB Basics
TL;DR:

● USB is a simple, two*-wire protocol developed to address limitations of
legacy communications ports (RS-232, PS/2, IBM EPP/LPT).

● Somewhat complex if you’re a host, but simple if you’re a device.
● From a very high-level developer perspective, it’s basically just a fancy way of

squishing lots of bytes back and forth through a narrow pipe.
○ USB does enforce some standardization of the data transferred.

Endpoints
An abstraction for each of multiple communications channels multiplexed over a
single set of USB data lines.

Image Credit: BeyondLogic “USB in a nutshell”

Endpoints

Control Bidirectional communications channel used for standard communications and simple
packetized back-and-forth. Used for initial device discovery and setup.

Only transport that also specifies a packet format. EP0 is always a control endpoint.

Bulk Unidirectional transport for shipping bytes ‘in bulk’-- bulk endpoints tend to get “all” of
the leftover bandwidth on the bus.

Interrupt Unidirectional transport for short bursts of latency-sensitive data. Used in cases that
are similar to when you’d trigger an interrupt (e.g. keyboard keypress state).

Isochronous Unidirectional transport for data that grows “stale” if not delivered quickly-- such as
video frames from a camera.

Control Requests
Communications on EP0 are always packetized control requests, which are
useful for sending simple commands, data, and data requests.

Image Credit: BeyondLogic
“USB in a nutshell”

Enumeration
One of the main advantages USB provides is the ability for devices to
self-describe, a process known as enumeration:

● USB devices describe themselves and their function(s) by providing standard
data blocks known as descriptors over the EP0 control channel.
○ These blocks provide a variety of information: the device’s ID, string

descriptions, how the endpoints can be configured, and etc.
● The device is initialized into a state where it can be addressed on the bus.

There are several valid ways to enumerate; many hosts do things slightly
differently.

USB Classes
In addition to specifying the standard protocol used for enumeration/configuration,
the specs also specify protocols for standard device classes, allowing e.g.
operating systems to provide standardized drivers.

● Human Interface Device (keyboards, mice, datagloves; the usual)
● Serial (e.g. CDC-ACM)
● Mass storage (UMS bulk only / UAS)
● Audio / Video
● Midi
● Scanners
● Networking
● etc.

[show off real USB device here]

FaceDancer: a history
It’s not a bus, it’s a network - Sergey Bratus

FaceDancer: a history
It’s not a bus, it’s a network - Sergey Bratus

I’ll build a thing! - Travis Goodspeed

FaceDancer: a history
It’s not a bus, it’s a network - Sergey Bratus

I’ll build a thing! - Travis Goodspeed

Limitations of Original Facedancer
Original Facedancer was a huge step forward, but suffered from limitations that
prevented it from fully emulating modern devices:

● The core USB chip, the MAX3421E, was capable only providing four
fixed-type endpoints, preventing emulation of all but the simplest devices.

● The GoodFET-derived architecture passes all input through an FTDI
USB-to-serial converter, significantly slowing comms.

To overcome these, we worked to develop...

FaceDancer 2
Including support for a variety of devices, including:

● FaceDancer
● RaspDancer / BeagleDancer
● GreatFET
● Soon: rad1o badge
● Soon: Linux with UDC - RPi Zero, BBB, etc.

New Features
New hardware platforms offer us the ability to add features well beyond the
capability of the original FaceDancer hardware:

● Support for emulating USB 2.0 high speed devices*
● More flexible configurations; including:

○ Fully flexible endpoint configuration
○ More endpoints

● Support for MITM’ing USB connections for advanced attacks and monitoring

So, what can we do?

Quite a bit, it turns out:

● Attack USB hosts and driver stacks
○ Fuzzing, e.g. with umap

● Fingerprint USB implementations to e.g. identify host OSs
● Emulate USB devices for prototyping and emulation:

○ Keyboards
○ USB Mass Storage
○ FTDI
○ DFU (steal device firmware)

[it’s super easy; let’s look at an emulated
USB-to-serial converter]

https://github.com/ktemkin/Facedancer/blob/master/USBSerial.py

device_emulation++: UMS double fetch
Of course, nothing says our emulated devices have to behave nicely.

Example: most systems assume that disk contents don’t change on their own
Reality: in practice, they totally can

Example firmware update sequence:

● USB host reads firmware off flash drive, computing a checksum as it does
● USB host verifies the checksum, which passes
● USB host rereads the firmware and flashes it to ROM

[peanut butter demo time]

https://github.com/ktemkin/Facedancer/blob/master/facedancer-ums-doublefetch.py

device_emulation++: decompiling firmware
Neighbor @scanlime had an interesting use case:

● In her Wacom-tablet-as-an-RFID work (PoC||GTFO 0x13:4), she dumped
firmware from an undocumented microcontroller using USB glitching magic.

● No public ISA documentation or standalone disassembler existed for this
uC; but a vendor debug application would disassemble any firmware read
back by the vendor’s unobtanium debug dongle.

The natural solution?

● Emulate a debug dongle!

https://www.google.be/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwilhd__icbVAhVJBBoKHXn2ABkQtwIIJjAA&url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTeCQatNcF20&usg=AFQjCNFlnXGbzoGtvMAzaU8tFfILMs98Jw

[thanks for the demo, Micah]

USBProxy
USBProxy is a tool that allows us to proxy the connection between a host and
device. While proxying a connection we can:

● Log USB packets to pcap files
● Modify data being sent to or from a device
● Inject new packets into the connection

The original version was based on a BeagleBone Black. We are rewriting it to take
advantage of FaceDancer 2.

[let’s monitor some USB]

https://github.com/ktemkin/Facedancer/blob/master/USBProxy.py

USBProxy using hardware
Some of the same capabilities are available through virtualisation tools, such as
vUSBf and usbmon, so when would we want a hardware solution?

When we don’t control the host system, e.g. in:

● Games consoles
● In car entertainment
● Point of sale
● Televisions
● Any embedded device that allows USB devices to be connected to it

[annnnd MITM...]

https://github.com/ktemkin/Facedancer/blob/master/USBProxy.py

Future Work
● Support for anything with a UDC/OTC Linux driver, such as a RPi Zero

○ “Make your printer a FD2”
● Support for USB 3.0 (see also: Daisho)
● USB C and Power Delivery support
● USB Host support for e.g. controlled USB glitching

Questions?
https://github.com/ktemkin/FaceDancer

https://github.com/dominicgs/GreatFET-Experimental

@dominicgs

@ktemkin

https://github.com/ktemkin/FaceDancer
https://github.com/dominicgs/GreatFET-Experimental

